SEW Review 2

1. Find all values of x that are NOT in the domain of the following functions.

$$f(x) = \frac{3x}{2x - 10}$$

$$g(x) = \frac{x^2 + 2x - 63}{x^2 - 49}$$

2. Simplify.

$$\frac{7(2w+5)(w+6)}{21(w+4)(2w+5)}$$

$$\frac{x-8}{x^2-64}$$

$$\frac{4u^2 - 100}{u^2 - 8u + 15}$$

3. Perform the operation and simplify.

$$\frac{2y}{3a} \cdot \frac{9ay}{10y^5}$$

$$\frac{4x - 20}{45x - 40} \cdot \frac{9x - 8}{2x - 10}$$

$$\frac{x-1}{x^2-x-6} \cdot \frac{4x+8}{x-2}$$

$$\frac{4x - 20}{45x - 40} \cdot \frac{9x - 8}{2x - 10} \qquad \frac{x - 1}{x^2 - x - 6} \cdot \frac{4x + 8}{x - 2} \qquad \frac{x^2 - 3x + 2}{x^2 + 5x + 6} \div \frac{4x - 8}{x + 2}$$

$$\frac{c^2 - 9c}{c^2 - c - 12} + \frac{3c + 8}{c^2 - c - 12}$$

$$\frac{5}{6y} - \frac{9}{8y^2}$$

$$\frac{2}{x-5} - \frac{3}{x+4}$$

$$\frac{c^2 - 9c}{c^2 - c - 12} + \frac{3c + 8}{c^2 - c - 12} \qquad \frac{5}{6y} - \frac{9}{8y^2} \qquad \frac{2}{x - 5} - \frac{3}{x + 4} \qquad \frac{4}{3x^2 + 2x - 1} + \frac{2}{3x^2 - 4x + 1}$$

$$\frac{15s^4}{3t^5u^3}$$

$$\frac{5rs^2}{9t^2u}$$

$$\frac{7 - \frac{2}{5y}}{3 - \frac{2}{5y}}$$

$$\frac{1 - \frac{3}{x+6}}{\frac{9}{x+6} + x}$$

$$\frac{1}{u^{-1} - v^2}$$

4. Evaluate

$$256^{\frac{1}{4}}$$

$$27^{\frac{1}{3}}$$

$$(-8)^{\frac{1}{3}}$$

$$81^{-\frac{1}{4}}$$

5. Simplify.

$$w^{\frac{5}{7}} \cdot w^{\frac{3}{4}}$$

$$\frac{u^{\frac{1}{2}}}{u^{\frac{6}{7}}}$$

$$\sqrt{27u^{14}}$$

$$\sqrt{54x^{13}}$$

$$\sqrt{8t^5y^8}$$

$$\sqrt[3]{40t^8w^3}$$

$$\sqrt{75} - 3\sqrt{27}$$

$$4z\sqrt{32z} + \sqrt{18z^3}$$

$$\sqrt{5z} \cdot \sqrt{7z}$$

$$\sqrt[3]{12u^2}\cdot\sqrt[3]{9u^5}$$

$$(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})$$

$$(x+2\sqrt{2})^2$$

$$\sqrt[4]{y} \cdot \sqrt[3]{y^2}$$

6. Solve. Remember to check your solutions.

$$\sqrt{3y+18}+2=5$$

$$\sqrt{5x+10} = \sqrt{7x-12}$$

$$\sqrt{11y - 30} = y$$

$$\sqrt{11y - 30} = y \qquad u - 5 = \sqrt{49 - 8u}$$

7. Perform the operation and simplify. Write your solution in a + bi form.

$$(6-2i)+(4+3i)$$

$$(3-7i)-(5+4i)$$

$$(3-7i)-(5+4i)$$
 $(-3+6i)(-4+3i)$

$$\frac{4-2i}{2-5i}$$

8. Solve. You may need to use the quadratic formula.

$$(v-7)^2 - 32 = 0$$

$$(w+9)^2 - 45 = 0$$

$$2x^2 + 5x - 1$$

$$4x^2 - 9x + 3 = 0$$

$$3x^2 + 5x = 3$$

$$2x^2 - 3x + 6 = 0$$

9. A model rocket is launched with an initial upward velocity of 235 $\frac{ft}{sec}$. The rocket's height h (in feet) after t seconds is given by $h = 235 - 16t^2$.

Find all values of t for which the rocket's height is 151 ft.

10. Graph the following functions. Make sure to label the vertex.

$$q(x) = -2x^2$$

$$h(x) = 3x^2 - 1$$

$$y = (x - 1)^2 - 3$$

11. State the vertex and x-intercepts of the following functions, then use them to graph the function.

$$y = x^2 - 4x - 21$$

$$y = x^2 - 8x + 12$$

12. Given $f(x) = -2x^2 + 16x - 34$, answer the following.

Does the function have a minimum or a maximum value?

At what x value does the min/max occur?

What is the min/max value?

13. A supply company manufactures copy machines. The unit cost C (cost in dollars to make each copy machine) depends on the number of machines made. If x machines are made, then the unit cost is given by C(x) = $0.5x^2 - 170x + 25,850$. What is the minimum unit cost?

14.
$$s(x) = 3x + 6$$

$$t(x) = 4x$$

$$u(x) = x^2 + 7$$

$$w(x) = \sqrt{x+8}$$

Given the functions defined above, find the following expressions.

$$(s+t)(x)$$

$$(s \cdot t)(x)$$

$$(s-t)(4)$$

15. For each pair of functions below, find f(g(x)) and g(f(x)). Then determine whether f and g are inverses of each other.

$$f(x) = \frac{6}{x}$$

$$f(x) = 2x + 3$$

$$f(x) = \frac{x+7}{5}$$

$$g(x) = \frac{6}{x}$$

$$g(x) = 2x - 3$$

$$g(x) = 5x - 7$$

16. h is a one-to-one function. Find $h^{-1}(x)$.

$$h(x)4x + 3$$

$$h(x) = 5x^3 + 7$$

$$h(x) = \sqrt[3]{2x+5}$$

17. f is a one-to-one function, $f(x) = \sqrt{x+5} + 4$.

Find the domain and range of f(x). Then find $f^{-1}(x)$ and its domain.